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ABSTRACT

It is well known that global numerical model analyses and forecasts benefit from the routine assimilation of

atmospheric motion vectors (AMVs) derived from meteorological satellites. Recent studies have also shown

that the assimilation of enhanced (spatial and temporal) AMVs can benefit research-mode regional model

forecasts of tropical cyclone track and intensity. In this study, the impact of direct assimilation of enhanced

(higher resolution) AMV datasets in the NCEP operational Hurricane Weather Research and Forecasting

Model (HWRF) system is investigated. Forecasts of Atlantic tropical cyclone track and intensity are exam-

ined for impact by inclusion of enhanced AMVs via direct data assimilation. Experiments are conducted for

AMVs derived using two methodologies (‘‘HERITAGE’’ and ‘‘GOES-R’’), and also for varying levels of

quality control in order to assess and inform the optimization of the AMV assimilation process. Results are

presented for three selected Atlantic tropical cyclone events and compared to Control forecasts without the

enhanced AMVs as well as the corresponding operational HWRF forecasts. The findings indicate that the

direct assimilation of high-resolution AMVs has an overall modest positive impact on HWRF forecasts, but

the impact magnitudes are dependent on the 1) availability of rapid scan imagery used to produce the AMVs,

2) AMV derivation approach, 3) level of quality control employed in the assimilation, and 4) vortex initial-

ization procedure (including the degree to which unbalanced states are allowed to enter the model analyses).

1. Introduction

Given the increasing volume and resolution of satel-

lite data now becoming available, it is desirable to seek

optimal methods to exploit these observations. This is

especially pertinent to improving forecasts of high-

impact weather events such as tropical cyclones (TCs).

One type of geostationary satellite data that can be

expected to improve the representation of TC wind

structure and its environmental flow fields is atmo-

spheric motion vectors (AMVs). AMVs are derived

from sequential satellite images by tracking coherent

cloud and water vapor targets (Velden et al. 1997), and

are an approximation of the local wind at the target

height. They are assimilated routinely in all operational

global numerical weather prediction systems and have

been shown to produce positive impacts on the accuracy

of global model initial conditions (e.g., LeMarshall et al.

2008a) and forecasts of tropical cyclone track (Velden
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et al. 1998; Goerss 2009; Langland et al. 2009; Berger

et al. 2011).

Methods to process and improve the quantity and ac-

curacy ofAMVs are evolving (Velden et al. 2005; Bresky

et al. 2012; Borde et al. 2014). Higher-spatiotemporal-

resolution data are being realized through advancing

satellite sensors and scanning strategies, increased com-

puting resources for processing the data, and improv-

ing derivation methodologies. More frequent dataset

availability and improved AMV quality is now possible

with rapid image scanning strategies becoming routine

on operational geostationary satellites. Near ‘‘full disk’’

(scanning view of the satellite) AMV datasets are be-

coming increasingly available on an hourly basis from

operational/national global processing centers. Even

more frequent AMV datasets (1–10min) are now pos-

sible over programmable targeted areas when a ‘‘rapid

scan’’ mode is activated on the satellite. While these

higher-spatiotemporal-resolution datasets are likely not

suited for coarser-resolution global model assimilation

systems, regional/mesoscale models can benefit. For

example, Le Marshall et al. (2008b) documented the

impacts of high-resolution AMVs in the operational

Australian regional model, and the Japan Meteorolog-

ical Agency (JMA) found that the assimilation of

MTSAT rapid scan AMVs in their mesoscale model

with four-dimensional variational data assimilation

(4D-Var) provided improvements to typhoon forecasts

(Yamashita 2012). Using research-quality regional

modeling systems, Pu et al. (2008) found positive impact

of assimilating AMVs on TC forecasts, and Wu et al.

(2014, 2015) used the Weather Research and Fore-

casting (WRF) Model and Data Assimilation Research

Testbed (DART) assimilation system to more closely

examine AMV forecast impacts on TC tracks and in-

tensity. They developed data processing and assimila-

tion strategies that achieved optimal results, and some

of these are employed in this study.

Data assimilation (DA) specific to TCs has advanced

rapidly in recent years, focusing on the assimilation of a

variety of data including airborne Doppler radar and

inner-core dropwindsondes, surface best track data

(TCVitals), and upper-ocean observations. Given the

promise of advanced imagers on geostationary satellites

that are now becoming reality [e.g., Himawari-8/9,

GEO-KOMPSAT-2A/2B, EUMETSAT-MTG,GOES-R

(launched 19 November 2016 and is now GOES-16)],

it is prudent to take advantage of improving data as-

similation schemes to seek optimal methods of fully

exploiting the information content of these data in high-

impact weather events such as TCs. In particular, the

impact on analyses/forecasts of TC intensity and track

from assimilation of high-resolution AMVs into the

operational WRF system for hurricane prediction [Hur-

ricane Weather Research and Forecasting Model

(HWRF); Tallapragada et al. (2014)] is the focus of

this study.

A basic description of the AMV datasets, model/DA,

and selected TC cases is given in section 2. Section 3 is an

overview of the methodology employed and the exper-

iments conducted. Model forecast impact results are

presented in section 4, followed by a summary and dis-

cussion of the findings in section 5.

2. Background

At the beginning of this study, operationally pro-

duced AMVs by NOAA/NESDIS were being directly

assimilated into only one of the operational HWRF’s

three domains (i.e., d02, the coarsest of the vortex-

following nests). Most of the information content of

these AMVs must first pass through the sieve of

the National Centers for Environmental Prediction

(NCEP) Global Data Assimilation System (GDAS),

where they can then impact the HWRF background

fields. However, the GDAS assimilates AMVs using

data thinning and quality-control (QC) strategies

commensurate with the purposes of global analyses and

likely does not retain full AMV information on smaller

flow scales associated with TCs (Sears and Velden

2012). Consequently, our research is aimed at pro-

viding guidance to NCEP/EMC and other regional DA

and modeling centers on how to most effectively ex-

tract the wind information from AMVs in the context

of TC environments.

a. AMV datasets

AMVs are routinely processed by NOAA/NESDIS

from the two operational geostationary (GOES-East

and -West) satellites. These datasets are generated to

provide large-scale coverage, with the primary ben-

eficiary being global model assimilation with nominal

6-h cycles. For global completeness, similar AMV

datasets are produced by EUMETSAT from the Eu-

ropean Meteosat series, and by JMA over the western

Pacific region from the MTSAT/Himawari satellites.

Countries such as India, Korea, and China now also

have geostationary satellite systems that provide

regular AMV datasets. All of these sources are rou-

tinely made available over the Global Telecommu-

nication System (GTS).

While the operationally produced AMV datasets are

reliable and adequate for global model analyses, the

coverage and processing methodologies are not opti-

mized for smaller-scale flows. Regional model/DA sys-

tems such as those designed for numerical hurricane
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forecasting are trending toward nested grids down to

cloud-resolving scales. High-impact local weather

events such as TCs may have important mesoscale flow

fields that need to be resolved in order to improve these

high-resolution analyses and subsequent forecasts.

Therefore, it is imperative to develop observation

strategies that meet these increasing demands.

One emerging way to enhance the coverage, density,

and quality of AMVs is by taking advantage of new-

generation satellite sensors and scanning capabilities.

More rapid scanning, coupled with higher-precision

sensors and image navigation allow for improved fea-

ture tracking with higher density and higher quality

AMVs. Traditionally, the operational AMV datasets

noted above employ image triplets separated by 30min.

More recent satellites such as the current GOES series,

Himawari-8, Meteosat-SG, and COMS-1 allow routine

imaging at 10–15min, and super-rapid scanning down to

1-min intervals over targeted regions. Since clouds and

water vapor features evolve in time, it is desirable

to sample them at the shortest interval possible to

obtain the most coherent AMVs (Velden et al. 2005).

GOES-R, which was launched on 19 November 2016,

will be commissioned for use in 2017 and is referred to as

GOES-16. It will be possible to routinely sample TC

events at up to 1-min frequency in multispectral imagery

for storms within the GOES-16 field of view.

As part of GOES-R risk reduction and readiness, an

effort is under way to develop improved AMV pro-

cessing methodologies that are designed to optimize

the information content of the observations in TC en-

vironments. The HWRF Model analyses and forecasts

provide the test bed to evaluate different processing

and assimilation strategies. While the chosen experi-

ments were not conducted in real time, all attempts

were made to simulate the operational environment to

the extent possible.

The enhanced AMV datasets used in this study were

generated for selected hurricane cases with fully au-

tomated procedures using two different processing

routines: a traditional approach that is based on the

current NOAA/NESDIS operational processing strat-

egies (‘‘HERITAGE’’), and a new approach being im-

plemented for AMV processing in the GOES-R series

era (‘‘GOES-R’’). These AMV datasets contain esti-

mates of wind speed and azimuth as derived from in-

frared window (IR), shortwave infrared (SWIR), visible

(VIS), and water vapor at high cloud top (CTWV) im-

agery (no clear-sky WV vectors were produced for this

study). The VIS (daylight hours) and SWIR (nighttime

hours) AMVs are only processed to track lower-

tropospheric (700–1000hPa) clouds. GOES rapid scan

images are employed in theAMV tracking process when

available. The HERITAGE method includes an elabo-

rate automated QC procedure tuned to hurricane envi-

ronments, which is invoked in postprocessing (Velden

et al. 1998). The GOES-R approach employs a novel

nested tracking technique with improved vector height

assignments, and relies on a quality indicator that is

based on a set of QC tests. Further details on the

HERITAGE approach can be found in Velden et al.

(2005), and a description of the GOES-R approach in

Bresky et al. (2012). Both AMV processing methodo-

logies are evaluated in this study for their dataset attri-

butes in TC environments, and ultimately their impact

on HWRF analyses and forecasts.

1) PROCESSING DETAILS SPECIFIC TO HURRICANE

ENVIRONMENTS

For each of the three selected TC cases in this study

(further described in section 2c), enhanced AMV data-

sets were reprocessed using both of the aforementioned

methods for the full life cycle of the storm (with the ex-

ception of Sandy) at hourly intervals, and over a domain

centered on the TC. Example plots for each selected TC

are shown in Fig. 1 with respect to the HWRF d02 as-

similation domain (the actual datasets extend beyond the

plotted boundaries, except for Sandy, which was re-

stricted by the GOES-14 super rapid scan domain).

The AMV processing strategies for enhanced obser-

vations around TCs were patterned after the study by

Velden et al. (1998) and include the use of GOES rapid

scan imagery to derive the vectors whenever available

(further discussed in the results section). Briefly, the

strategies include the following: 1) adjusting the target

selection and search box criteria to allow denser AMV

coverage to better capture smaller-scale TC flow fields;

and 2) with theHERITAGEmethod, a relaxation of the

QC postprocessing step in the vicinity of a targeted TC.

The HERITAGE processing method is regulated by an

objective analysis with operating parameters that have

been tuned and QC settings that have been relaxed to

increase the retention of vectors in those regions of the

TC and its environment that may deviate from the

background guess fields but still be in spatial coherence

with neighboring observations [see Velden et al. (1998)

for further processing details, and Sears and Velden

(2012) for dataset characteristics].

It should be noted that the GOES-R series AMV pro-

cessing algorithm is relatively new, and as such does not

yet benefit from years of empirical tuning for hurricane

applications. The quality control step consists of a single

parameter, the quality indicator (QI; Holmlund et al.

2001), and the ramifications of this will become evident in

the results section. The adaptation of this methodology

is still a work in progress, but the improved vector
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derivation and height assignments warranted a compari-

son with the existing operational (HERITAGE) method.

2) DATASET PREPARATION FOR ASSIMILATION

Once the datasets were processed, the native file for-

mats were converted to ASCII text and then encoded

into theGDAS prepbufr files for inclusion in theHWRF

DA. AMVs over land and between 400 and 700 hPa

were excluded based on the study by Sears and Velden

(2012), which showed higher vector errors in this height

range. Since the typical vertical distribution of AMVs in

the tropics is highly bimodal (cirrus level and marine

cumulus level), the volume of data excluded was quite

small. Finally, only vectors that surpassed empirically

determined thresholds of QI were passed on to the

prepbufr files per the studies of Wu et al. (2014, 2015).

b. Model description, initialization, and data
assimilation

1) THE HWRF MODEL

All simulations were conducted using HWRF version

3.6 obtained from the trunk in HWRF developers’

repository on 1 November 2014. With the exception

of customary bug fixes and the computing platform

employed (see below), this essentially represents the

FY2014 operational HWRF code (hereafter H214).

TheH214 configuration comprises three computational

grids: a parent domain (hereafter d01) with 0.188 spacing,
and two TC-following, nested domains at 0.068 (hereafter
d02) and 0.028 (hereafter d03) spacing, respectively. The
horizontal extent of the domains is 808 3 808, 128 3 128,
and 7.18 3 7.18 respectively. Each of the domains has 61

vertical levels, and the model top is set at 2hPa.

Cloud microphysics is simulated using a version of the

Ferrier scheme (Ferrier 2005) optimized for hurricane

applications, and the GFS aimplified Arakawa–Schubert

(SAS) (e.g., Han and Pan 2011) scheme is used to pa-

rameterize deep and shallow convection on d01 and d02.

Convection is handled explicitly on d03. Additional

physics packages used in this study include the following:

the GFDL land surface model (Tuleya 1994) and radia-

tion schemes (Fels and Schwarzkopf 1975; Lacis and

Hansen 1974; Schwarzkopf and Fels 1991); the GFS

boundary layer scheme (Hong and Pan 1996); and ocean

coupling is accomplished via the Message Passing In-

terface Princeton Ocean Model for Tropical Cyclones

(MPIPOM-TC; Yablonsky et al. 2015).

A more complete description and summary of

the FY2014 operational version of the HWRF model

FIG. 1. Example plots of enhanced AMVs assimilated into HWRF (d02 domain indicated) for the three TC cases in this study.

(a)–(c) Before and (d)–(f) after GSI QC is applied. The AMVs plotted are derived from the GOES-R method.
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physics and numerics may be found in the H214 scien-

tific documentation (Tallapragada et al. 2014).

2) MODEL INITIALIZATION

Preparation of HWRF for a TC forecast involves a

mixture of static field interpolation, vortex relocation/

enhancement, and data assimilation/merging. The first

two items will be covered in this section, and the latter

will be detailed in the next section.

On the parent domain, d01, large-scale fields from the

GFS analysis are interpolated to the model grid both

horizontally and vertically prior to every forecast (i.e.,

no further optimization or data assimilation is per-

formed). On the moving nests, d02 and d03, the first-

guess fields come from the GDAS 6-h forecast. To this

first guess is added a bogus vortex (if it is the first fore-

cast cycle for this particular TC), or a relocated, cycled

vortex (if a prior 6-h HWRF forecast for this TC exists).

In addition to relocation, enhancement of the vortex

structure (maximum wind, wind radii) may take place if

the cycled and observed vortex characteristics are ap-

preciably different. In each case, the basis for the ob-

served TC vortex parameters (position, intensity, wind

radii) is established by the NCEP TC-Vitals message

valid at a particular date and time.

3) DATA ASSIMILATION

In addition to themodel initialization stepsmentioned

above, 6-hourly cycling DA is performed on the ex-

panded HWRF d02 and d03 domains to produce a

vortex structure, which more closely fits the observa-

tions (the expanded domain d02 and d03 domains are

208 3 208 and 108 3 108, respectively, allowing obser-

vations which lie outside the 108 3 108 and 7.18 3 7.18
forecast domains to impact the analysis). After analyses

are obtained on the expanded domains, the results are

merged to the forecast domains using the standard

‘‘blending initialization’’ as included in the H214 code

package. It is important to note that the blending pro-

cess has a significant impact on the vortex structure used

to initiate forecasts. In particular, analysis increments

within 150 km of the center are eliminated below

600hPa in favor the first-guess structure provided by

vortex initialization. The full benefits of data assimila-

tion are only fully realized beyond the blending zone

(i.e., .300 km from the vortex center).

DA in H214 makes use of the hybrid variational

technique option in the Gridpoint Statistical In-

terpolation analysis system (GSI) (Wu et al. 2002; Wang

2010). Background error covariances are derived from a

combination of ensemble-based and static sources. The

HWRF DA system (HDAS) uses an 80-member GFS

ensemble to generate the ensemble-based covariance,

and the static component relies on the same static co-

variances used for NCEP’s GFS model. The hybrid ap-

proach permits a degree of flow dependence in the

covariance structure (and, likewise, in the analysis in-

crements) that is not possible with a strictly static ap-

proach. The background error covariance used in

HDAS is a weighted sum of the ensemble and static

components such that the former accounts for 80% and

the latter accounts for 20% of the final value.

For this study, the GSI code was used for all experi-

ments. To establish an upper bound with respect to

impact, no GSI-specific thinning was done on the AMV

observations prior to assimilation (thinning of various

degrees could be introduced later if necessary and used

as a tuning parameter in future work). The default

horizontal/vertical thinning was retained for all other

observations.

Prior to the execution of each outer loop, the GSI

employs a standardQC gross error check that eliminates

observations outside of set tolerances from the back-

ground field (the previous 6-h forecast plus the vortex

relocation/adjustment). The GSI QC scheme is a func-

tion of observation error, and in our study the AMV

errors were decreased as suggested in Nebuda et al.

2014. This results in a more restrictive gross-error check,

and the effect of this is shown in Fig. 1 by a reduced

vector density (GOES-R AMV examples are plotted).

To test the bounds of AMV impact on HWRF analyses/

forecasts, the default tolerances of the GSI QC scheme

were relaxed for one set of experiments (described fur-

ther in section 3). In these ‘‘NO-QC’’ experiments, al-

most all AMVobservations that pass internal processing

QC (also discussed in section 3) are permitted to pass

through the HDAS gross error checks. Further in-

formation on the HDAS may be found in the H214

scientific documentation (Tallapragada et al. 2014).

c. Selected case study TCs

Three Atlantic TCs were selected for study based on a

number of factors that include the availability of satellite

rapid scan imagery and the degree of forecast difficulty

with respect to both track and intensity. The three

storms selected are Hurricanes Sandy (2012), Gonzalo

(2014), and Edouard (2014). Figure 2 shows the tracks of

these storms along with their intensity trends (from

NHC best track records).

Hurricane Sandy was notorious for its sharp, highly

anomalous westward turn and making landfall along the

U.S. mid-Atlantic seaboard. The storm was also char-

acterized by convective structure transformations lead-

ing to intensity fluctuations during its life cycle, making

this a challenging system to forecast (Blake et al. 2013).

Fortuitously, the GOES-14 satellite was tasked for
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Super Rapid Scanning Operations (SRSO) by NOAA/

NESDIS for the period from Sandy’s passage over Cuba

until after its U.S. landfall. Continuous 1-min images

centered on Sandy were provided byGOES-14, offering

an unprecedented 5-day period of such observations

during a historic TC. This case also serves as an excellent

demonstration of image sampling that will become

routine now that GOES-16 is operational.

Gonzalo formed east of the Lesser Antilles and

quickly strengthened into a category 4 hurricane (on the

Saffir–Simpson hurricane wind scale), andmade landfall

in Bermuda as a high-end category 2 hurricane, causing

extensive damage. The NHC forecast and much of the

model guidance did not predict Gonzalo to strengthen as

quickly as it did during the first few days of its existence

(Brown 2015). Limited Rapid Scan Operations (RSO,

7-min image frequency) were active forGOES-13 during

most of Gonzalo’s lifetime. However, the RSO domain

only covers west of ;608W. East of 608W, only 15-min

imagery was available for AMV derivations.

Edouard was a category 3 hurricane at peak intensity

that remained over the open Atlantic Ocean during its

lifetime. This storm was relatively well behaved, so both

official and most model guidance was better than aver-

age for both track and intensity (Stewart 2014). In ad-

dition, there was no satellite rapid scanning available at

any time, so that the derivation of AMV datasets relied

on the routine 15-min imagery available fromGOES-13

and Meteosat-10.

3. Methodology

The enhanced AMV datasets for this study were

created by CIMSS and NOAA/NESDIS/STAR, and

FIG. 2. Tracks and intensities for the three TC cases in this study (from NHC best tracks).
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encoded into the GDAS prepbufr files for inclusion in

the cycling DA workflow. [It should be noted that the

nominal spatial density of the enhanced AMV datasets

processed in this study is on the order of 10–20km

(spectral and cloud target dependent), which is 2–3

times denser than typical global operationally processed

AMV datasets.] These AMV datasets contain observa-

tions of speed and azimuth as derived from IR, SWIR,

CTWV, andVIS channel imagery andwere converted to

zonal and meridional wind components prior to their

insertion into the prepbufr files. In addition, as part of

dataset preparation, the AMV datasets were first passed

through a prefilter step before entering the data assimi-

lation system following the procedure ofWu et al. (2014).

This step is in accord with the following criteria: the en-

hanced AMVs are passed on to the assimilation only if

the associated QIs are equal to or larger than an empir-

ically determined 0.6. AMVs meeting this QI threshold

but with expected error (EE) values .4.5ms21 are fil-

tered out unless the AMV is .25m.s21 and has an at-

tending QI . 0.7. The QI and EE values are produced

during the AMV derivation process and represent in-

ternal QC indicators of AMV quality.

As noted earlier, the reprocessed AMV datasets are

derived at a frequency of 1 h, but the HWRF data as-

similation cycle is 6-hourly. Rather than assume that all

observations falling within the data assimilation window

(63 h) are valid at the analysis time, HWRF uses first-

guess at appropriate time (FGAT) to produce back-

ground fields that are valid at each observation time.

Doing so produces innovations (observations minus

background), which more faithfully represent the in-

formation content of the observations themselves and

allows the computation of increments that reflect the

injection of that information into the analysis. To ac-

complish this, FGAT uses HWRF forecasts valid 3h

prior and 3h subsequent to the analysis time, which,

when combined with the forecast valid at the analysis

time itself, produces a set of three forecast fields that can

be used to interpolate the HWRF background to any

arbitrary time within 3h of the analysis. Using this

procedure, the ‘‘off cycle’’ AMV datasets can be as-

similated more effectively.

As discussed above, two methods of AMV derivation

are investigated for impact (HERITAGEandGOES-R).

Both algorithms are employed to produce AMV datasets

during the life cycle of the three chosen TC cases

described above to illuminate some of the possibili-

ties of the GOES-R series mission relative to the

problem of TC prediction. Baseline performance is first

established by generating a Control (CTL) set of HWRF

forecasts. This involves cycling data assimilation (as

described above) from the first date/time of each TC

with an available TCVitals message, and continuing

until the TC has either dissipated or become extra-

tropical. In order that the impact of the AMV obser-

vations might be most effectively isolated (see the

results section below), only radiosonde observations

(RAOBs) from the GDAS prepbufr file are assimilated

on the moving nests (i.e., d02 and d03) during this first

set of CTL simulations. Observation errors for the

RAOBs are as given in the HDAS error table.

To assess the potential impact of the AMVs in a more

realistic operational setting, a second set of Control

forecasts are produced. This baseline (CTL ALL) as-

similates the full set of conventional observations used

in the operational HWRF as of 2014, except for the

operationally produced AMVs. In the results section

below, we also include the operational HWRF forecasts

(labeled asH214), which were the real-time runs for TCs

Gonzalo and Edouard, and a postprocessed set of runs

for TC Sandy done byNCEP/EMC using the sameH214

code. Table 1 summarizes the characteristics of the

HWRF Control/baseline experiments presented in

this study.

The subsequent model impact experiments then add

the HERITAGE or GOES-R AMV observations, re-

spectively. As noted earlier, observation errors for the

AMVs were modified from the values given in the

HDAS error table based on results from previous re-

search (Nebuda et al. 2014), which indicated that a re-

duction in the errors used in the standardGSI error table

yielded a tighter fit of the analysis to the data. The

vertical structure of the observation errors used in this

study is shown in Fig. 3 and represents a 30% reduction

relative to the default error table values.

As mentioned above, a final modification to the nor-

mal HDAS workflow was made in the GSI quality

control of the AMV datasets. While no alteration was

made for the CTL or the CTL ALL experiments, in the

AMV impact experiments two separate QC settings

were explored. The first used the same GSI default

settings employed in CTL, while the second (NO-QC)

altered (relaxed) the gross error check in the following

manner. Observations are rejected if the following in-

equality is satisfied:

jy2Hxj. e
gross

3 fmax[e
min

,min(e
max

, e
obs

)]g,

where jy 2 Hxj is the magnitude of the innovation (or

‘‘observation minus background’’), egross is the gross

error parameter, emin is the minimum error parameter

(fixed at 1.4), emax is the maximum error parameter

(fixed at 20.0), and eobs is the observation error (as de-

picted in Fig. 3). In this study, NO-QC used egross 5 10.0

(whereas the default setting is egross 5 1.3). Using these
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values, the maximum allowable innovation magnitudes

range from ;15m s21 in the lower troposphere to near

50ms21 in the uppermost troposphere. This means that

the NO-QC experiment essentially permits all but the

most egregious outliers (and allows a fuller examination

of the AMV impact). It is worth noting that GSI is a

3D-Var system with explicit assumptions of linearity and

Gaussianity. Some of the outlying observations inNO-QC

(particularly those generating innovations greater than,

say, 3s from the background) may be difficult for GSI

to fit properly on this account and the results should be

interpreted with this in mind.

Table 2 summarizes the characteristics and attributes

of the HWRF AMV impact experiments presented in

this study.

4. Results

The results of the HWRF forecasts of TC track and

intensity (defined as maximum sustained surface winds,

or Vmax) are first presented for the concatenated sample

of the three TC case study events versus a Control set of

forecasts with reduced conventional observations assim-

ilated (CTL). This set of experiments is designed to show

the impact the AMVs can have on the HWRF analyses

and forecasts in the absence of competing data sources.

The second set of assimilation experiments are bench-

marked against the full set of operational data (CTL

ALL) and the operational HWRF (H214) in order to

provide a more realistic assessment of the AMV obser-

vation impacts. For this set of experiments, the results are

also broken down by TC cases to diagnose situational

differences. It should be noted that very few of the data

impact results are statistically significant at the 95% level,

primarily due to the relatively small forecast sample sizes.

a. AMV forecast impacts versus CTL

Figure 4a shows the results of the aggregated forecasts

from the three TC events for overall track errors. The

results versus CTL show some modest positive impact

from the AMV assimilation with the GOES-R method

out to about 66 h, after which time results are mixed.

Regarding the aggregated intensity forecast errors,

Figs. 4b–d indicate that both AMV processing methods

yield near-neutral results during the first 24-h forecast

lead times, thenmodest positive impacts between 36 and

96h, then mixed results after that out to 120 h. It is ap-

parent from these three cases that the assimilation of the

enhanced AMVs (particularly the new GOES-R data-

sets) show some promise to reduce HWRF forecast er-

rors (owing to small sample sizes, none are statistically

significant at the 95% level), but it appears difficult to

produce impact at the short forecast range (first ;24h)

and toward the end of the 5-day forecast range (further

speculation on potential reasons for this is discussed in

the summary section).

Also shown in Fig. 4 are the results of the experiments

with theGSIQC tolerances greatly relaxed (NO-QC). It

is readily apparent that the more stringent and tuned

internal QC associated with the HERITAGE AMV

processing method limits the differences between the

respective HERITAGE experiment results. On the

other hand, assimilation of the GOES-R datasets, which

rely only on the QI parameter for internal QC, greatly

benefits from the application of the GSI QC step.

b. AMV forecast impacts versus ‘‘all-obs’’ CTL

The results presented above were benchmarked

against a CTL with only radiosonde observations as-

similated in order that the potential impact of theAMV

TABLE 1. Baseline HWRF simulation attributes. CTL is Control/baseline, and H214 is the operational HWRF as of 2014. Here d02 and

d03 refer to the two HWRF TC-following nested domains.

Conventional (excluding raob)

on d02 and d03

Raob on d02

and d03

Satellite (excluding operational

AMV) on d02 only

Operational AMV

on d02 only

H214 ✔ ✔ ✔ ✔

CTL ✔

CTL ALL ✔ ✔ ✔

FIG. 3. The vertical structure of AMV observation errors used in

this study (green). The default GDAS values are shown in red for

comparison.
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observations might be most effectively isolated. To

assess the impact of the AMVs in a more realistic op-

erational setting, a second set of Control forecasts

(CTL ALL) was produced, which assimilated the

identical set of observations used in the operational

H214, except for the operationally produced AMVs.

The operational AMVs were left out of the CTL ALL

since they were not routinely assimilated at the time of

the three TC events, and to avoid redundancy issues in

subsequent experiments when the enhanced AMV

datasets processed by CIMSS are added. Based on

the findings in section 4a, only the results of the

TABLE 2. HWRF AMV impact simulation attributes. HERITAGE represents the legacy GOES AMV processing method, while

GOES-R is a contemporary AMV processing approach developed as part of the GOES-R series algorithm working group; d02 and d03

refer to the two HWRF TC-following nested domains.

Parent baseline

Enhanced AMVs—HERITAGE

method on d02 and d03

Enhanced AMVs—GOES-R

method on d02 and d03

GSI QC (i.e., gross

error check)

HERITAGE NO-QC CTL ✔

HERITAGE CTL ✔ ✔

GOES-R NO-QC CTL ✔

GOES-R CTL ✔ ✔

HERITAGE ALL CTL ALL ✔ ✔

GOES-R ALL CTL ALL ✔ ✔

FIG. 4. Mean absolute error (MAE) of (a) HWRF forecast track, (b) forecast minimum SLP, (c) forecast

maximum sustained wind, and (d) forecast maximum sustained wind bias for CTL and the CTL series impact

experiments. Sample sizes for each forecast lead time are indicated in red along the top of the plot.
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experiments with the GSI default QC fully invoked are

presented in this section.

Not surprisingly, Fig. 5a shows that the modest posi-

tive AMV impacts on HWRF track forecasts out to

about 72 h are reduced when compared to the ‘‘full-obs’’

CTL ALL. The notable degradation at 96 h is curious,

and will need to be verified with a much larger sample

size for significance. Amore promising result is shown in

Figs. 5b–d for HWRF intensity forecasts. Even against

the more stringent CTL ALL, there is a notable re-

duction in forecast errors in the 24–96-h lead time range

with the assimilation of GOES-RAMVdatasets. Before

and after this range, the impacts are negligible, as was

the case versus the basic CTL.

Another way to view the HWRF forecast results is by

examining the pairwise frequency of superior perfor-

mance, or FSP. This metric provides the percentage of

times that one experiment is superior to the other in

terms of forecast error. For example, Figs. 6a and 6b

show how often the HWRF AMV experiment forecasts

are superior to CTL ALL for track and intensity. Above

50% indicates a positive impact. For the track forecasts,

the HERITAGE experiments are slightly negative

overall, while the GOES-R results aremixed. The impact

on intensity shows a little more promise in both methods,

with the GOES-R achieving slightly better results. This

can also be seen in Figs. 6c and 6d, where the two AMV

experiments (full GSI QC) are paired against each other.

TheGOES-R experiment is a solidwinner in the both the

intensity and forecast track comparison.

It is informative to further dissect the general findings

of the aggregate results presented above by examining

the forecast impacts from the individual storm events,

given the diversity in the case selection.

1) HURRICANE SANDY (2012)

The track and intensity forecasts for Hurricane Sandy

after its passage over Cuba and eventual westward turn

FIG. 5. As in Fig. 4, but for CTLALL and theCTLALL series impact experiments.H214 is included for comparison

purposes only and does not serve as the baseline for any impact experiment(s).
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into the U.S. eastern seaboard were complex and well

documented (Blake et al. 2013). Sandy’s TC structure

changes and highly uncertain track due to rapidly

evolving environmental steering flows (high track bi-

furcation potential; McNally et al. 2014) made this a

natural case to examine for potential AMV impacts. In

addition, the GOES-14 satellite was activated for 1-min

continuous image sampling (SRSO) during this segment

of Sandy, allowing for optimal target tracking in pro-

cessing of the AMV datasets. It should be noted, how-

ever, that the optimal image intervals for most effective

tracking was found to be 3min for VIS and 5min for IR/

SWIR/CTWV.

Figure 7a shows the 120-h forecast results of directly

assimilating the enhancedAMVs intoHWRF for Sandy’s

track versus CTL ALL. The results of the HWRF

reruns of this case by NCEP using the operational H214

model code (which assimilates a large array of conven-

tional and satellite observations) are also shown for

comparative purposes. It is noteworthy that these

benchmark track forecasts errors are considered quite

low [below average for 2012 Atlantic TCs, Blake et al.

(2013); NHC forecast verification statistics]. Despite

this, there is a minor positive impact from both the

HERITAGE and GOES-R methods when compared

with CTL ALL (and H214) out to around 72 h. Beyond

72 h, the AMV results slightly degrade versus the CTL

ALL forecasts, although the sample size becomes very

small. In this case, the comparison of track forecast

results between the two AMV processing methodologies

(HERITAGE and GOES-R) is mixed.

The HWRF intensity forecasts for Sandy are shown in

Figs. 7b–d. Overall the results are mixed, with the

AMVs improving the forecasts at some lead times and

FIG. 6. Frequency of superior performance (FSP) for the pairwise (i.e., two member) comparison of CTL ALL

and individual impact experiments for (a) forecast track and (b) forecast maximum sustained wind speed, and for

the pairwise comparison ofHERITAGEALLandGOES-RALL for (c) forecast track and (d)maximum sustained

wind speed. EXP 5 HERITAGE ALL (EXP1) is in red, and GOES-R ALL (EXP2) is in blue. Sample sizes for

each forecast lead time are indicated in red along the top of the plot.
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degrading at others. Except for around 72 h, the

HERITAGE method performs slightly better than the

GOES-R approach with respect to the maximum surface

wind speed (Vmax) mean forecast errors. This may be a

result of the HERITAGE processing method being bet-

ter adapted to rapid scans based on extensive research

and development.

2) HURRICANE EDOUARD (2014)

Since Edouard occurred primarily over the central At-

lantic and out of reach of most conventional observations,

it is a good case to highlight the potential of enhanced

AMVs to impact HWRF forecasts. Figure 8a shows there

is a small but consistently positive impact on track forecast

errors with the GOES-R AMV assimilation versus CTL

ALL for the 24–120-h period, and for all but the 84–108-h

period versus the operationalHWRF (H214). Impacts are

neutral for the HERITAGE experiment.

With regards to Edouard’s intensity forecasts,

Figs. 8b–d show generally neutral impacts from the

GOES-R experiment while HERITAGE slightly de-

grades the intensity forecasts. A large percentage of the

HWRF mean Vmax errors for Edouard are due to a

negative bias (Fig. 8d), and the assimilation of the

HERITAGE AMVs actually aggravates this bias.

It should be noted that no rapid scan imagery was

available during Edouard. The AMVs relied on images

at regular 15-min intervals from GOES and Meteosat.

Since vector quality improves with reduced image in-

tervals (Velden et al. 2005), we can speculate that the

results in this case likely represent a lower bound on

model forecast impact potential as we enter the GOES-R

series era when rapid-scanning will be the ‘‘new normal.’’

3) HURRICANE GONZALO (2014)

The HWRF benchmark track forecasts for Gonzalo

were phenomenal, with a mean error of only 37 n mi

(1 nmi5 1.852 km) at 48-h lead time [5-yr-averageNHC

track error (2009–13) is 78 n mi]. Therefore, it is not

surprising that the assimilation of AMVs were not

FIG. 7. As in Fig. 5, but for the Hurricane Sandy case only.
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positively impactful; in fact some forecast degradation is

noted at the longer lead times (Fig. 9a). The GOES-R

algorithm dataset performance is slightly superior to the

HERITAGE method out to 72h.

The HWRF intensity forecasts for Gonzalo are an-

other matter. Figures 9b–d shows the mean Vmax

forecast errors rapidly jump up to 20–25 kt during the

first 36-h lead times in both the CTL ALL and opera-

tional (H214) runs. As with Edouard, most of this error

is due to a strong negative bias (Fig. 9d). The assimila-

tion of AMVs, especially the GOES-R datasets, notably

reduces the errors relative to the CTLALL. There were

rapid scans available for most of the event duration

(regular GOES RSO, which provides nominal 7.5-min

image updates). This factor could be contributing to the

positive intensity forecast impacts.

c. Diagnosing impact causes

It is beyond the scope of this paper to conduct an

exhaustive analysis of the model behavior with respect

to the forecast results presented above. Indeed, such a

diagnosis is complicated at the very outset by the ex-

tensive vortex processing that occurs in HWRF both

prior to (i.e., relocation and size/intensity correction)

and after (i.e., merging/blending) data assimilation. The

former tends to obliterate flow dependence and impedes

the recursive accumulation of observation impact in the

background, while the latter discards observation im-

pact present in the analysis. Despite these difficulties, a

single instance is presented to shed some light on how

the AMVs are impacting the results in a particular case.

Figure 10 shows an example from Hurricane Sandy for

the analysis valid at 0000 UTC 26 October 2012. Rela-

tive to CTL, the GOES-R AMV experiment (cf.

Figs. 10e and 10b) produces deeper, more robustly an-

ticyclonic wind increments (i.e., positive north of the

center, negative south of the center) on expanded do-

main d02. This serves to weaken the TC’s cyclonic cir-

culation and corrects the positive (i.e., too strong)

intensity bias evident in the CTL at this time. The suc-

ceeding 6-hHWRFbackground field (valid at 0600UTC

26 October 2012) suggests that the correction is a

FIG. 8. As in Fig. 5, but for the Hurricane Edouard case only.
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durable one, at least out to 6 h (cf. Figs. 10f and 10c). It

is important to reiterate that the blending process in

HWRF DA has a significant impact on the vortex

structure used to initiate forecasts. In particular, analysis

increments within 150km of the center are eliminated

below 600hPa in favor of the first-guess structure pro-

vided by vortex initialization. Therefore, the increments

have little direct impact on the low-level inner-core

structure. Rather, any impact is going to be indirect from

the outer radii or from the upper levels.

However, to illustrate the degree of caution necessary

in interpreting these results, Fig. 11 shows the impact of

vortex relocation/correction in arriving at the 0600 UTC

background fields. The raw forecasts on d03 for CTL

and GOES-R are shown in Figs. 11a and 11c, re-

spectively, and their counterparts after relocation/

correction are shown in Figs. 11b and 11d. As is seen, the

relocated CTL vortex is more upright than in the raw

forecasts, while the GOES-R vortex requires a much

less severe correction. While this speaks favorably to the

GOES-R impact (i.e., the raw forecast was in better

agreement with the TCVitals), the severe correction to

the CTL vortex structure highlights the difficulty of im-

pact attribution (and of comparing impacts among vari-

ous experiments) in a cycled HWRF DA setting.

There is also some interesting behavior in the results if

partitioned by cycle time. Figure 12 shows that the

model intensity biases are strongly negative for the

combined sample, except at T 5 0 h (and at T 5 120 h,

but the sample sizes become very small). The assimila-

tion of AMVs results in a positive bias at the initial time,

but only with the 1200 and 1800 UTC cycles. This in-

fluence is apparent through the 24-h forecast lead time

in both AMV datasets, thereafter continuing with the

GOES-R results as a small mitigation of the CTL neg-

ative bias through the rest of the lead times. In-

terestingly, it is during these times that the VIS AMVs

are dominant (Fig. 13). The VIS AMVs are only pro-

duced at low levels [capped at 700hPa; Velden et al.

(2005)], and are usually found outside the TC core

FIG. 9. As in Fig. 5, but for the Hurricane Gonzalo case only.
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region due to convection and cirrus obscuration of low-

level cloud targets. This could suggest that the VIS

AMV data are influencing the model TC vortex outer

wind radii, which then can influence the model intensity

after continuous assimilation cycles.

5. Discussion and summary

Satellite-derived atmospheric motion vectors (AMVs)

are becoming increasingly available in quantities and

quality commensurate with high-resolution TC fore-

cast systems. Fully exploiting the information content

of the AMVs in TC data assimilation is a current

challenge. Recent studies using research models sug-

gest that enhanced AMVs, when assimilated in a

continuous mode, can improve TC initial analyses and

track/intensity forecasts. However, the case-by-case

forecast impacts have been mixed, and positive results

are generally modest.

In this study, we investigate the assimilation of en-

hanced (higher resolution) AMV datasets for impact in

the NCEP operational hurricane forecast model

HWRF. Forecasts of Atlantic tropical cyclone track and

intensity are examined for impact by inclusion of the

enhanced AMVs via direct continuous data assimila-

tion. Experiments are conducted for two AMV deriva-

tion methodologies (‘‘HERITAGE’’ and ‘‘GOES-R’’),

and also for varying levels of quality control in order to

assess and inform the optimization of the AMV assim-

ilation process in HWRF. Our study is meant as ex-

ploratory and will require the benefit of a much larger

sample to confirm the findings. Results are presented for

three selected Atlantic tropical cyclone events and

compared to Control forecasts without the enhanced

AMVs as well as the corresponding operational HWRF

forecasts.

Our findings indicate that the direct assimilation of

high-resolution AMVs have an overall modest positive

impact on HWRF forecasts, but the impact magnitudes

are dependent on the 1) availability of rapid-scan im-

agery used to produce the AMVs, 2) AMV derivation

approach, 3) level of quality control employed in the

assimilation, and 4) vortex initialization procedure and

likely the degree to which unbalanced states are allowed

to enter the model analyses via the AMV observations.

The promising aspects of the findings are related to

the first three. There is some suggestion that the AMVs

derived from rapid-scan imaging may impart greater

positive model forecast impact [supported by previous

studies; Wu et al. (2014, 2015)]. These rapid scans will

become a routine image sampling strategy onceGOES-16

is commissioned in 2017. It is also apparent that the

new AMV derivation approach developed as part of

GOES-R readiness is capable of reproducing results

comparable to the current operational (HERITAGE)

method. In fact, when coupled with the GSI QC as part

FIG. 10. Vertical cross sections of zonal wind at 0000UTC 26Oct 2012 duringHurricane Sandy along 768Wfacing west for (left) HWRF

background analyses, (middle) analysis increments, and (right) the background analyses in the subsequent cycle (6-h forecast). Plots are

shown for both the (a)–(c) CTL and (d)–(f) for the assimilated GOES-RAMV experiments and are computed on expanded domain d02.

Warm (cold) colors indicate westerly (easterly) winds. The core of Sandy is located at about 258N.
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of the HDAS, the forecast results are superior to

HERITAGE inmost cases examined. This is a pleasing

result given the GOES-R AMV processing algorithm

is on an operational path at NOAA/NESDIS.

The overall HWRF forecast impact results from our

study are neutral to only slightly positive, which for TC

track is acceptable since the HWRF CTL/operational

forecasts were already quite good. The HWRF does not

FIG. 11. Vertical cross sections of zonal wind for CTL and GOES-R (as in Fig. 10), but for background fields

(a),(c) before and (b),(d) after vortex relocation is applied on the innermost forecast domain (i.e., d03). (a),(c)

The 6-h forecasts and (b),(d) the impacts of vortex relocation as well as size and intensity adjustment.

FIG. 12. HWRF intensity (maximum sustained wind speed) bias forecast errors (mean absolute errors) for the

combined results of the three TC cases, partitioned by analysis cycle time. (a) 0000 and 0600 UTC cycles and

(b) 1200 and 1800UTC cycles. Sample sizes for each forecast lead time are indicated in red along the top of the plot.

1122 MONTHLY WEATHER REV IEW VOLUME 145

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/14/22 06:06 PM UTC



perform hybrid GSI DA on its parent domain (d01),

which covers the synoptic/large-scale features such as

the environmental steering flow that governs much of

the track of hurricanes. Recall that the AMVs are cur-

rently only assimilated in the HDAS inner domains

(d02/d03, Fig. 1). Without assimilating AMVs in the

large domain, it is likely that HWRF track forecast im-

provement will be more difficult since there is little new

information being added to the analysis of the broader-

scale environmental steering flow. There is some

degradation in the longer-range lead times ($96h), al-

though this result is derived from a fairly small sample

size. We speculate that the longer forecast times may be

feeling the influence of d02/d01 analysis boundaries.

Given the high density of the data, especially when there

are rapid-scan-produced AMVs available, it is possible

domain interface issues could arise in the initial analyses

that propagate into the longer-range forecasts of the TC.

For example, TCs Sandy and Gonzalo both produced

some HWRF track forecast degradations at 96 h and

beyond, and had very high density AMVs from rapid

scans. Future studies could explore the assimilation of

AMVs in the parent domain since the observations are

operationally available over those scales.

The AMVs had more opportunity to correct the TC

intensity biases in the HWRF forecasts (particularly the

short term) from the three selected cases, and modest

impacts are noted. There are many potential reasons

for a lack of stronger impact. Unlike TC track, which is

controlled primary by the environmental steering flow,

TC intensity modulation is governed more by near-

storm or in-storm processes. The current configuration

of the HWRF invokes vortex relocation, size and in-

tensity correction, and merging/blending procedures at

each 6-h cycle. As part of this suite of pre- and post-DA

processing techniques, the information content of

previous-time analysis cycles is lost before DA occurs

and the information content of current-time, data-

influenced analyses increments are removed in the core

region due to imbalances (model bias/covariance). Ob-

viously, this is a suboptimal use of AMV observations

near the core region, and this is certainly an area of

current/future investigation for the HWRF DA team.

Cycled covariances will better representmesoscale flows

to take advantage of the enhanced AMV datasets, along

with more frequent DA cycling (i.e., 1 h vs 6 h). Re-

placing the vortex initialization with self-consistent DA

involving hybrid/EnKF steps and novel inner-core ob-

servations (satellite, aircraft) is being explored.

There are certainly other plausible reasons for the

modest AMV impact on the model vortex winds, in-

cluding mass balance constraints and the model expec-

tation of vertically supported profiles (of which the

AMVs are not). It is also possible given the density of

the AMV datasets and their assimilation at hourly in-

crements, that the data are being overfitted in the

analysis. Correlated error is always a concern. This study

disregarded preassimilation GSI thinning procedures

with the goal of better-resolving true hurricane-scale

flow fields, but this is a topic for future investigation as

well. The same goes for tuning of the covariance length

scales in GSI, as different observation types such as

AMVs (which possess marked differences in spatio-

temporal density) may benefit from some adjustment to

the default settings. Despite the sometimes mixed im-

pacts, there are good lessons to be learned from this

investigation, and as such the prospects of direct as-

similation of enhanced AMVs into HWRF in the

GOES-R series era are promising.
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